Med5(Nut1) and Med17(Srb4) Are Direct Targets of Mediator Histone H4 Tail Interactions

نویسندگان

  • Zhongle Liu
  • Lawrence C. Myers
چکیده

The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. In addition to its canonical role in transcriptional activation, recent studies have demonstrated that S. cerevisiae Mediator can interact directly with nucleosomes, and their histone tails. Mutations in Mediator subunits have shown that Mediator and certain chromatin structures mutually impact each other structurally and functionally in vivo. We have taken a UV photo cross-linking approach to further delineate the molecular basis of Mediator chromatin interactions and help determine whether the impact of certain Mediator mutants on chromatin is direct. Specifically, by using histone tail peptides substituted with an amino acid analog that is a UV activatible crosslinker, we have identified specific subunits within Mediator that participate in histone tail interactions. Using Mediator purified from mutant yeast strains we have evaluated the impact of these subunits on histone tail binding. This analysis has identified the Med5 subunit of Mediator as a target for histone tail interactions and suggests that the previously observed effect of med5 mutations on telomeric heterochromatin and silencing is direct.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Studies of the Yeast Med5, Med15 and Med16 Mediator Tail Subunits

The yeast Mediator complex can be divided into three modules, designated Head, Middle and Tail. Tail comprises the Med2, Med3, Med5, Med15 and Med16 protein subunits, which are all encoded by genes that are individually non-essential for viability. In cells lacking Med16, Tail is displaced from Head and Middle. However, inactivation of MED5/MED15 and MED15/MED16 are synthetically lethal, indica...

متن کامل

Histone modifications influence mediator interactions with chromatin

The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an in...

متن کامل

The H4 tail domain participates in intra- and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays.

The condensation of nucleosome arrays into higher-order secondary and tertiary chromatin structures likely involves long-range internucleosomal interactions mediated by the core histone tail domains. We have characterized interarray interactions mediated by the H4 tail domain, known to play a predominant role in the formation of such structures. We find that the N-terminal end of the H4 tail me...

متن کامل

Mediator complex association with constitutively transcribed genes in yeast.

Mediator is a large, multisubunit complex that is essential for transcription of mRNA by RNA Pol II in eukaryotes and is believed to bridge transcriptional activators and the general transcription machinery. However, several recent studies suggest that the requirement for Mediator during transcriptional activation is not universal, but rather activator dependent, and may be indirect for some ge...

متن کامل

Structure and binding of the H4 histone tail and the effects of lysine 16 acetylation.

The H4 histone tail plays a critical role in chromatin folding and regulation--it mediates strong interactions with the acidic patch of proximal nucleosomes and its acetylation at lysine 16 (K16) leads to partial unfolding of chromatin. The molecular mechanism associated with the H4 tail/acidic patch interactions and its modulation via K16 acetylation remains unknown. Here we employ a combinati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012